首页> 外文OA文献 >Vibration-free Cooler for the METIS Instrument Using Sorption Compressors
【2h】

Vibration-free Cooler for the METIS Instrument Using Sorption Compressors

机译:使用吸附压缩机的METIS仪器的无振动冷却器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

METIS is the “Mid-infrared ELT Imager and Spectrograph” for the European Extremely Large Telescope (E-ELT) that will cover the thermal/mid-infrared wavelength range from 3-14 micron. Starting from a pumped nitrogen line at 70K, it requires cryogenic cooling of detectors and optics at 40 K (1.4 W), 25 K (1.1 W), and 8 K (0.4 W). A vibration-free cooling technology for this instrument based on sorption coolers is under development at the University of Twente in collaboration with Dutch Space. We propose a sorption-based cooler with three cascaded Joule-Thomson coolers of which the sorption compressors are all heat sunk at the 70K platform. A helium-operated cooler is used to obtain the 8K level with a cooling power of 0.4 W. Here, three pre-cooling stages are used at 40K, 25K and 15K. The latter two levels are provided by a hydrogen-based cooler, whereas the 40K level is realized by a neon-based sorption cooler. Based on our space-cooler heritage, our preliminary design used sorption compressors equipped with gas-gap heat switches. These have maximum efficiency, but the gas-gap switches add significantly to the complexity of the system. Since in METIS relatively high cooling powers are required, and thus a high number of compressor cells, manufacturability is an important issue. We, therefore, developed an alternative cylindrical compressor design that uses short-pulse heating establishing a thermal wave in radial direction. This allows to omit the gas-gap heat switch. The paper discusses the adapted cell design and two METIS cooler demonstrator setups that are currently under construction.
机译:METIS是欧洲超大型望远镜(E-ELT)的“中红外ELT成像仪和光谱仪”,它将涵盖3-14微米的热/中红外波长范围。从70K的抽气氮气管线开始,它要求将探测器和光学器件进行低温冷却,分别为40 K(1.4 W),25 K(1.1 W)和8 K(0.4 W)。特温特大学与荷兰航天局合作,正在开发一种基于吸附冷却器的仪器无振动冷却技术。我们提出一种基于吸附的冷却器,其中包括三个级联的焦耳-汤姆逊冷却器,其中所有的吸附式压缩机都在70K平台上热沉。使用氦气冷却器以0.4 W的冷却功率获得8K液位。此处,使用三个预冷却级分别为40K,25K和15K。后两个级别由基于氢气的冷却器提供,而40K级别由基于氖的吸附式冷却器实现。基于我们的空间冷却器传统,我们的初步设计使用了配有气隙热开关的吸附式压缩机。这些具有最高的效率,但是气隙开关显着增加了系统的复杂性。由于在METIS中需要相对较高的冷却功率,因此需要大量的压缩机单元,因此可制造性是重要的问题。因此,我们开发了一种替代性的圆柱形压缩机设计,该设计使用短脉冲加热在径向方向上建立热波。这允许省略气隙热开关。本文讨论了适应性电池设计和目前正在建设中的两种METIS冷却器演示装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号